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Abstract

Two numerical procedures for finding the acoustic eigenvalues in the rectangular room with arbitrary
(uniform) wall impedances are developed. One numerical procedure applies Newton’s method. Here,
starting with soft walls, the eigenvalues are found by increasing the impedances of each wall pair in small
increments up to the terminal impedances. Another procedure poses the eigenvalue problem as one of
homotopic continuation from a non-physical reference configuration in which all eigenvalues are known
and obvious. The continuation is performed by the numerical integration of two differential equations. The
latter procedure was found to be faster and finds all possible solutions. The set of eigenvalues allowed the
room modal natural frequencies and damping constants to be obtained. From sound decays measured in a
hard-walled rectangular room, and from the collective-modal-decay curve, the impedances of the hard walls
are estimated. These are then used to find the reverberation times of the modes in the room with the floor
lined with sound absorbing material of known acoustic impedance. It was found that a single reverberation
time, for all modes, is only supported in the rectangular room with hard walls and at the higher frequency
bands, consistent with Sabine’s theory, which assumes a diffuse sound field. In the rectangular room with
hard walls and at the lower frequency bands, and in the rectangular room with the floor lined with sound
absorbing material and for all frequency bands, modes with rather distinctive reverberation times may
produce sound decays not always consistent with Sabine’s prediction.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The main goal of the present work is to numerically solve the acoustic eigenvalue equation in
the rectangular room for the general case where each wall has an arbitrary (uniform) impedance.
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This would ultimately allow the prediction of sound decays from which the sound quality of the
room can be assessed.
Since the earliest discoveries of Sabine [1] and until today, the reverberation time is considered

to be one of the most important factors in determining the sound quality of a room. When the
sound decay is linear, on a decibel scale, the slope is related to the reverberation time, which is
then the only parameter necessary to describe the sound decay process. This is very convenient,
but it is also an idealized situation only found in rooms with a diffuse sound field, a characteristic
of reverberation chambers at high frequencies. In practical rooms, such as concert halls, theatres,
classrooms, meeting rooms and industrial rooms, considering the process of sound decay to be
linear is quite often only a crude approximation to the actual conditions. In such rooms, the
sound decay is usually non-linear and peculiarities such as double slopes, stepped decays and
curvature are often reported.
When Sabine [1] proposed the reverberation time to characterize the sound decay process, and

his famous reverberation formula to calculate it, he considered the room as a lumped system,
where the sound energy was assumed spatially uniform at any instance during the decay process.
The transient response during the decay was then determined by formulating an overall energy
balance on the room, in which the sound power loss at the surfaces was related to the rate of
change of the internal sound energy. Experience shows that this model is only consistent for
rooms where the sound field is diffuse.
The exact treatment of the transient and stationary response of a room is possible theoretically

by means of the wave theory. Morse and Bolt [2] established a complete formulation for sound
waves in the rectangular room in terms of the normal modes. Using the acoustic impedance to
describe the boundary condition at the walls, an eigenvalue equation was established. The steady
state and transient solutions were then obtained for large wall impedances (hard walls). These
solutions became classical and are often used to study low-modal-density acoustical phenomena
in small rooms and/or low frequencies.
A complete implementation of the method of Morse and Bolt has not been possible yet because

there is no known general procedure for finding the eigenvalues. Therefore, the existence of such a
procedure would allow the normal modes to be obtained in cases where the walls in the
rectangular room are not hard. In cases where there is a non-uniform impedance distribution over
each wall, the separation of variables is not possible and the method cannot be applied. Although
one might still consider that the applicability of this method is still very limited (restricted to
rectangular rooms with uniform impedances over each wall), a procedure for finding the
eigenvalues is a necessary complement for the application of the method of Morse and Bolt to its
full extent. The method can also provide a reference point for checking some of the more versatile
approximate methods using finite or boundary elements, which are more fitted to non-uniform
impedance distributions.
Upon writing the velocity potential for the standing waves and applying the boundary

conditions at the room walls, an equation that gives the set of eigenvalues for each wall pair is
established. In the present work, the original eigenvalue equation was re-written as an entire
function, which greatly simplified the development of the numerical procedures presented here.
One procedure applies Newton’s method and the other the homotopic continuation.
From the set of acoustic eigenvalues numerically found in a rectangular room with two sound

absorbing configurations, the natural frequencies and damping constants of the room acoustic
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modes are calculated. Applications are given to obtain the collective-modal-decay and the modal
reverberation time in octave frequency bands. The results are then discussed in the light of
Sabine’s theory.

2. Theory

Morse and Bolt [2] wrote the velocity potential for a standing wave in a rectangular room with
dimensions Lx; Ly and Lz as

cðo; x; y; zÞ ¼ DðxÞEðyÞF ðzÞeiot; ð1Þ

where o is the driving angular frequency and

DðxÞ ¼ cosh½ðpix=LxÞwx � fx� ð2Þ

with similar expressions for E and F : The complex wave number in the x direction is pwx=Lx; and
wx; in terms of its real and imaginary parts can be written as wxðoÞ ¼ mx þ ikx; where mx was called
the wave number parameter and kx was called the attenuation parameter. In the case of damped
standing waves, the wave number ends up being generalized to a complex quantity whose
imaginary part is the spatial attenuation factor given by pkx=Lx:
The ratio of the sound pressure p to normal particle velocity vn into the wall surface equals the

impedance of the surface Z: For the walls normal to the x direction this ratio is given by

Zx ¼
p

vx

¼
rð@c=@tÞ
�ð@c=@xÞ

: ð3Þ

Substituting Eq. (1) into Eq. (3), and recognizing that the specific acoustic impedance is zx ¼
Zx=rc; results

zx ¼ �
Zx

wx

coth½ðpix=LxÞwx � fx�; ð4Þ

where Zx ¼ ðoLx=pcÞ; which was called the frequency parameter, and gives the x-dimension of the
room in half wavelengths.
The specific acoustic impedance for the wall at x ¼ 0 is zx¼0 ¼ �zx1

; which substituted into
Eq. (4) gives

fx ¼ �coth�1 zx1

Zx

wx

� �
: ð5Þ

The specific acoustic impedance for the wall at x ¼ Lx is zx¼Lx
¼ zx2

; and Eq. (4) together with
Eq. (5) results in

piwx þ coth�1 zx1

Zx

� �
wx

� �
þ coth�1 zx2

Zx

� �
wx

� �
¼ 0 ð6Þ

with two other equations for wy and wz:
As discussed by Morse and Bolt [2], Eq. (6) has an infinite number of roots w: There is at least

one root (and not more than two roots) with m between zero and 1, another root with m between 2
and 3, and so on. The different roots are distinguished by assigning to them different values of the
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subscript n; with n ¼ 0 for the value of w with the smallest value of m; n ¼ 1 for the next smallest
value of m; and so on.
When both parallel walls have arbitrary, however, equal impedances zx1

¼ zx2
¼ zx and

dropping the subscripts x; Eq. (6) reduces to

cothð�piw=2Þ
w=2

¼ 2
z
Z
: ð7Þ

Morse [3] and Morse and Bolt [2] gave plots of the real and imaginary parts of the roots of
Eq. (7) as functions of the magnitude and phase angle of the specific acoustic impedance z: These
plots, known as Morse charts, correspond to the conformal transformation between w2 and
lnðz=ZÞ corresponding to Eq. (7). The transformation is multi-valued, with an infinite number of
sheets, corresponding to the infinite number of roots w: The Morse charts were given for only a
few cycles of the transformation [2].
A numerical procedure may in principle be developed for finding the roots of Eq. (7). However,

there are difficulties in solving this transcendental equation in the complex plane. The infinity of
roots gives rise to numerical problems when solving Eq. (7), because the numerical method may
jump without control from one solution to the other. This poses a problem when it is necessary to
orderly find the roots, n ¼ 0; 1, 2, nmax:
The complete Riemann surface of the transformation given by Eq. (7) is not known. Therefore

is not clear where the branch cuts shall be placed, to subdivide the Riemann surface into
unambiguous Riemann sheets. The basic rule for the positions of the branch cuts is that they must
go through the branch points. Branch points are places where the adjacent roots come together in
different Riemann sheets. Therefore, the knowledge of the branch points is of fundamental
importance.
An alternative form of writing Eq. (7) is

w
2
tan p

w
2

� �
¼ i

Z
2z
: ð8Þ

By selecting appropriate branch cuts, Mechel [4] presents a procedure to find the modal
solutions in rectangular ducts based on the direct determination of the branch points of an
equation with the same basic form of Eq. (8). Lippold [5], based on the identification of the
boundary lines between modes, presents a numerical method for the solution of Eq. (8) in the
rectangular room to find unambiguously the parameters m and k of the nth mode for an arbitrary
z: In both works, the numerical solutions are valid when two parallel (duct or room) walls have
the same (arbitrary) impedance.
No numerical procedure seems to exist for the case where any of two parallel walls in the room

have different and arbitrary impedances. This is the situation of most practical rectangular rooms.
In this case, Eq. (6) is the applicable eigenvalue equation for each wall pair. The present work
chooses to attack this problem by re-writing the defining equation, avoiding working with inverse
functions. Making use of the identity

cothðZ1 þ Z2Þ ¼
coth Z1 coth Z2 þ 1

coth Z1 þ coth Z2
ð9Þ
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with the aid of Eqs. (5) and (4), when dropping the subscripts x; Eq. (9) can be written as

cothðpiwÞ ¼
�1�

z1
Z
w

� �
z2
Z
w

� �
z1
Z
w

� �
þ

z2
Z
w

� � : ð10Þ

Applying to Eq. (10) the identity

coth Z ¼
1þ e�2Z

1� e�2Z
ð11Þ

with Z ¼ piw results in

eipw 1þ
z1
Z
w

� �
1þ

z2
Z
w

� �
� e�ipw 1�

z1
Z
w

� �
1�

z2
Z
w

� �
¼ 0: ð12Þ

Eq. (12) is an entire function. It has no branch points or branch cuts whatsoever. This form of
the acoustic eigenvalue equation greatly simplifies the development of numerical solutions.

3. Numerical procedures

3.1. Increment of impedances procedure

In Eq. (12) wn ¼ n; with n ¼ 0; 1, 2, 3,y, are roots for z1 ¼ z2 ¼ z0 ¼ 0: That is, for any wall
pair, for which both walls are soft, n is a root of Eq. (12). The nth root wn is found by increasing
the z’s of both walls, in small increments, from z0 ¼ 0 to z ¼ z1 for the first wall of the pair, and
from z0 ¼ 0 to z ¼ z2 for the second wall of the pair. Here z1 and z2 will be called the specific
terminal impedances.
By defining e as a fraction of the terminal impedances, e ¼ 0;y; 1; wne

is the root of Eq. (12)
when the first wall of the pair has the impedance ze ¼ ez1 and the second wall of the pair has the
impedance ze ¼ ez2: After each small increment in the impedances of both walls, the root wne

is
found by Newton’s method, having as initial approximation the root found in the previous step.
The root wn1

; corresponding to e ¼ 1; is the sought solution.
An example of the results produced by such a procedure is shown in Fig. 1. Fig. 1(b) shows the

real and the imaginary parts of the impedances of two parallel room walls as they vary according
to ez; with the specific terminal impedance of the first wall of the pair z1 ¼ 5� i2 and the specific
terminal impedance of the second wall of the pair z2 ¼ 82:8: Fig. 1(a) shows, in the complex plane
and for Z ¼ 20:7; the loci of the first 10 non-trivial roots of Eq. (12), as the specific impedances of
both walls vary according to Fig. 1(b).
Fig. 2 shows another representation of the results of Fig. 1(a) in terms of the variation with e of

the wave number parameter m and the attenuation parameter k:
Table 1 shows, for the first 10 non-trivial roots of Eq. (12), values of the wave number

parameters m and the attenuation parameters k; which are obtained from Fig. 2 for e ¼ 1:
It was observed, however, that the final solution for e ¼ 1 depends on the step size adopted to

increment the impedances. For the solutions presented above, the adopted step size was 10�4: For
step sizes greater than this value, 10�3 for instance, the procedure keeps finding roots already
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found. This is particularly critical for the higher order roots, and as a rule, the step size should be
reduced as the order of the root increases. For roots of orders corresponding to room natural
frequencies of a thousand Hertz, the step size should be as low as 10�6: The need of having to
work with such small step sizes slows down considerably the numerical iterative scheme based on
small increments of impedances.
Since, on the one hand, no solution should be attributed more than once to a root, on the other

hand, no important solution should be missed by the numerical procedure. The latter difficulty
was also experienced by this numerical procedure. As discussed earlier, there is the possibility of
more than one root in some strips of unity width running parallel to the imaginary axis. When
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Fig. 1. (a) Loci of the first 10 non-trivial roots of Eq. (12) in the complex plane, obtained by the method of increment of

impedances, as the specific acoustic impedances of two parallel room walls vary according to ez (b) for the specific

terminal impedances z1 ¼ 5� i2; z2 ¼ 82:8; and for Z ¼ 20:7:
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that is the case, it was found that the method of increment of impedances usually finds only the
root with smaller imaginary part. As shown in Table 1, in the fourth strip there is the root
3:7386þ i0:3247: It is known that in this same strip there is also the root 3:5688þ i1:4271; which
is missed by this method.

3.2. Homotopic continuation procedure

This procedure poses the eigenvalue problem as one of homotopic continuation from a
non-physical reference configuration in which all eigenvalues are known and obvious. The
continuation is performed by the numerical integration of two differential equations. The
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Fig. 2. (a) Real parts and (b) imaginary parts as functions of e of the first 10 non-trivial roots of Eq. (12), obtained by

the method of increment of impedances, for the specific terminal impedances of two parallel room walls equal to

z1 ¼ 5� i2 and z2 ¼ 82:8; and for Z ¼ 20:7:
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homotopic transformation preserves the multiplicity and the number of roots, the domains and
their relation to each other.
The nth root wn can be viewed as a pure function of z1=Z and z2=Z; defined by the constraint of

Eq. (12). It is then possible to define the differential equations

@wn

@ðz1=ZÞ
¼

@f =@ðz1=ZÞ
@f =@w

ð13aÞ

and

@wn

@ðz2=ZÞ
¼

@f =@ðz2=ZÞ
@f =@w

; ð13bÞ

where

f ðw; z1=Z; z2=ZÞ ¼ eipw 1þ
z1
Z
w

� �
1þ

z2
Z
w

� �
� e�ipw 1�

z1
Z
w

� �
1�

z2
Z
w

� �
; ð14Þ

@f

@ðz1=ZÞ
¼

@f

@ðz2=ZÞ
¼ �e�ipw 1�

z1
Z
w

� �
1�

z2
Z
w

� �
ð15Þ

and

@f

@w
¼ �e�ipw 1�

z1
Z
w

� �
1�

z2
Z
w

� �
þ ipeipw 1þ

z1
Z
w

� �
1þ

z2
Z
w

� �
: ð16Þ

Since the solution set is the positive integers for z01=Z ¼ z02=Z ¼ 0; it is then possible to find the
nth root by integrating Eqs. (13). Starting from the solution wn ¼ n; z01=Z ¼ z02=Z ¼ 0; integrate
Eq. (13a) to z1=Z: From this new solution, integrate Eq. (13b) to z2=Z:
For a pair of room walls with the specific acoustic impedance z ¼ 31� i87 and for Z ¼ 20:7;

Table 2 shows the first 10 non-trivial roots of Eq. (12) obtained by the method of increment of
impedances and by the homotopic continuation procedure. It can be seen that, in this case, the
method of increment of impedances fails to find two roots in the first strip of unity width running
parallel to the imaginary axis.

Table 1

Real and imaginary parts of the first 10 non-trivial roots of Eq. (12), obtained by the method of increment of

impedances, for a pair of room walls having the specific acoustic impedances z1 ¼ 5� i2 and z2 ¼ 82:8 and for Z ¼ 20:7

Root Refwg ¼ m Imfwg ¼ k

1 0.5537 0.1828

2 1.5455 0.1807

3 2.6004 0.2593

4 3.7386 0.3247

5 4.8525 0.2717

6 5.8969 0.2202

7 6.9195 0.1848

8 7.9334 0.1593

9 8.9429 0.1402

10 9.9498 0.1253
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4. Modal natural frequencies and damping constants

The solution of Eq. (12) for the three pairs of walls makes it possible to compute the
eigenfunctions and eigenvalues of the boundary value problem. The eigenfunctions given by
Eq. (1) satisfy the wave equation. Therefore, for each room mode N; a direct substitution of
Eq. (1) into the wave equation results in

r2cNðoÞ þ ð1=c2Þ½oNðoÞ þ ikNðoÞ�2cNðoÞ ¼ 0; ð17Þ

where N stands for the trio of numbers nx; ny; nz: The corresponding eigenvalues ½oNðoÞ þ ikNðoÞ�
are obtained from

½oNðoÞ þ ikNðoÞ�2 ¼ ðpcÞ2½ðwx;nx
ðoÞ=LxÞ

2 þ ðwy;ny
ðoÞ=LyÞ

2 þ ðwz;nz
ðoÞ=LzÞ

2�; ð18Þ

where wx;nx
ðoÞ is the nx root of Eq. (12) for the driving frequency o and for the x-walls, and

similarly for wy;ny
ðoÞ and wz;nz

ðoÞ:
The eigenvalue ½oNðoÞ þ ikNðoÞ� is the complex angular frequency, whose real part oNðoÞ is the

natural angular frequency of the damped standing wave cNðoÞ and whose imaginary part kNðoÞ is
the temporal absorption coefficient, also called the damping constant. Since kN is usually much
smaller than oN ; the following equations, in terms of the wave number parameters and
attenuation parameters for the three pair of walls, are good approximations for the natural
angular frequency and damping constant of the standing wave cN :

oNðoÞDpc½ðm2x � k2xÞ=L2
x þ ðm2y � k2yÞ=L2

y þ ðm2z � k2zÞ=L2
z �
1=2; ð19Þ

kNðoÞDpc½ðmxkx=ZxLxÞ þ ðmyky=ZyLyÞ þ ðmzkz=ZzLzÞ�: ð20Þ

A room supports many of these standing waves. The number of standing waves (modes) in a
given frequency band of width Df increases as the center frequency of the band, or the size of the
room, is increased.

Table 2

Real and imaginary parts of the first 10 non-trivial roots of Eq. (12), obtained by two numerical procedures, for a pair

of room walls having the specific acoustic impedances z ¼ 31� i87 and for Z ¼ 20:7

Root Numerical procedure

Increment of impedances Homotopic continuation

Refwg ¼ m Imfwg ¼ k Refwg ¼ m Imfwg ¼ k

1 — — 0.0762 0.3924

2 — — 0.8479 0.0645

3 1.9308 0.0254 1.9308 0.0254

4 2.9546 0.0163 2.9546 0.0163

5 3.9661 0.0121 3.9661 0.0121

6 4.9729 0.0096 4.9729 0.0096

7 5.9775 0.0080 5.9775 0.0080

8 6.9807 0.0068 6.9807 0.0068

9 7.9831 0.0060 7.9831 0.0060

10 8.9850 0.0053 8.9850 0.0053
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4.1. Collective-modal-decay

An application of these results is the prediction of sound decays in rooms. Sound decays are
usually measured in frequency bands. Each individual standing wave (mode) in the room, with
natural angular frequency given by Eq. (19), decays with a damping constant given by Eq. (20).
Therefore, in each frequency band there are a certain number of room modes that determine the
sound decay process. The decay in each band of width Df is characterized by the collective-modal-
decay curve given by [6]

Collective decayðDf ; tÞ ¼ 10 log

P
Df 1=kN

� 	
expð�2kNtÞP

Df 1=kN

" #
in dB; ð21Þ

where the summation is taken over all the modes whose natural frequencies fall within the
band Df :
The methods developed here were applied to obtain the impedance of the hard walls of a

rectangular room. The room dimensions are 9.20m long� 4.67m wide and 3.56m high. The walls
are hard, consisting of painted, non-porous masonry. The roots of Eq. (12) were generated for
each pair of room walls for various specific acoustic impedances z; under the assumption that z is
real, and having the same value for all room walls. The natural angular frequency and damping
constant of each standing wave in the room could then be found with the aid of Eqs. (19) and (20).
These were then used to obtain the collective-modal-decay curves in octave frequency bands with
the aid of Eq. (21). The collective-modal-decay curves thus obtained were then compared with
decay curves experimentally obtained in the rectangular room described above. The z values were
chosen among those giving the best decay resemblance.
The sound decays experimentally obtained in octave frequency bands are compared with

computational results in Fig. 3. The experimental decays are the averages of six microphones
positions. The z values for each octave frequency band generated by the procedure described
above are shown across the top of Fig. 3 with the corresponding decay curves. The z values thus
obtained are typical of hard surfaces were the impedance is known to be real and large. It can be
seen that the decay is linear for the higher frequency bands, whereas for the 500, 250, and 125Hz
frequency bands, the decay curves reveal a monotonic curvature. This behavior has been
independently observed in reverberation chambers at low frequencies by various investigators [6].
Therefore, as far as the prediction of sound decays in hard-walled rectangular rooms, these results
seem to support the adequacy of the normal mode solution.

4.2. Modal reverberation time

Another application of the methods presented here is in the prediction of modal decays in
rooms. In room acoustics, it is more convenient to talk in terms of the reverberation time of an
individual mode TN ; rather than in terms of its damping constant. The reverberation time of the
mode TN is equal to 3 ln 10=kN : In general, there are as many damping constants (reverberation
times), as there are modes. By plotting the number of modes having a reverberation time in a
specified time interval gives information about the type of modes that should dominate the sound
decay process.
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As usual, the modes can be separated into three groups. The modal numbering of Morse and
Bolt [2] will be adopted; that is, the mode with n ¼ 0 is given to the value of w with the smallest
value of m: It should be mentioned that the smallest value of m does not take into account the
trivial root for which m ¼ k ¼ 0: One group is composed of axial modes, for which two of the n’s
are zero. A second group is composed of tangential modes, for which only one n is zero. Finally,
the third group is composed of oblique modes, for which no n is zero.
The oblique modes, which are the majority of modes in a given frequency band, have nearly the

same reverberation time; however, the reverberation times of the tangential and axial modes are
quite different, and the resulting collective-decay curve is not a straight line, even under very light
absorption and at the lower frequency bands as shown in Fig. 3.
To find the modal distribution of reverberation times, the modes, according to their natural

frequencies, were grouped into five octave frequency bands from 125Hz to 2 kHz and, for each
band, they were re-grouped into oblique, tangential and axial-type modes. The reverberation
times of the modes in the hard-walled rectangular room are known from the damping constants
used to generate the results of Fig. 3. In the same room, the modal distribution of reverberation
times were also found for the case where the room floor is lined with sound absorbing material of
known specific acoustic impedance. The specific acoustic impedances of the lining material in the
five octave frequency bands from 125Hz to 2 kHz are: 0.80–i12.61; 0.92–i6.44; 0.80–i3.38; 0.83–
i1.45; 0.95–i0.53. The other five walls were assumed to have specific-acoustic-impedance values
shown across the top of Fig. 3. The roots of Eq. (12) were then generated for each pair of room
walls, from which the natural angular frequency and damping constant of each standing wave in
the room could be calculated with the aid of Eqs. (19) and (20). From the knowledge of the
damping constants, the reverberation time of each individual mode could be found.
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Fig. 3. Collective-modal-decay curves in octave frequency bands for a 9.20� 4.67� 3.56m3 rectangular room with

hard walls. Measured average decay curves of six microphone positions (??). Collective-modal-decay curves (——).

The specific acoustic impedances z estimated for the room walls are shown across the top of the decay curves in octave

frequency bands.
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Fig. 4. Mode fraction distribution as a function of the reverberation time for modes that have natural frequencies lying

in the octave frequency bands of (a1, a2) 125Hz, (b1, b2) 250Hz, (c1, c2) 500Hz, (d1, d2) 1 kHz and (e1, e2) 2 kHz, for

a rectangular room of dimensions 9.20m� 4.67m� 3.56m3 with hard walls (subfigures on the left with index 1), and

with the floor lined with sound absorbing material (subfigures on the right with index 2). Axial modes (m); tangential

modes (’); oblique modes (K); all modes (——). Reverberation time according to Sabine’s prediction (– – – –).

Measured reverberation time in the hard-walled room (- - - - -).
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Easwaran and Craggs [7] used the finite element model to obtain the reverberation times of the
modes in rooms with different shapes and sound absorbing characteristics. The same type of plots
of Easwaran and Craggs are shown in Fig. 4. This figure shows the mode fraction distribution of
reverberation times in octave frequency bands, which was obtained using the procedure described
above. The values on the abscissa of these plots are the mid-interval values of the reverberation
time interval. Also shown on these plots are the measured reverberation times in the hard-walled
room, and the reverberation times according to Sabine’s prediction for the hard-walled room and
for the room with the floor lined with sound absorbing material. The continuous lines on these
plots correspond to the sum of mode fractions that have reverberation times in the same interval.
For the room with hard walls, this sum is always equal to the mode fraction of one particular type
of mode. For the room with the floor lined with sound absorbing material, there may be more
than one group of modes with reverberation times in the same interval.
Sabine’s theory indicates that a single reverberation time would exist. From the results of the

normal mode theory, Fig. 4 shows that this is only true for the room with hard walls and for the
higher frequency bands (1 kHz and 2 kHz). This is consistent with the assumption for the validity
of Sabine’s formula; that is, a diffuse sound field, a situation in general encountered in rooms with
low absorption, and at the higher frequencies. In the room with hard walls and at the lower
frequency bands, and in the room with added absorption in all frequency bands, a single
reverberation time cannot be said to exist. This is consistent with the results using finite element
models [7]. Modes with rather distinct reverberation times can be excited. Even within the same
group of modes, there may be different reverberation times. For instance, axial and tangential
modes with three different reverberation times can be supported in the room with hard walls in
the 125Hz octave frequency band. In the same frequency band, in the room with the floor lined,
the tangential modes group has five different reverberation times. In Fig. 4 the reverberation time
corresponding to the dominant peaks coincides with the reverberation time of the oblique modes.

5. Summary and concluding remarks

In the present work, two numerical procedures were developed for finding the solutions of the
acoustic eigenvalue equation in the rectangular with arbitrary (uniform) wall impedances. These
numerical procedures were made possible by a transformation of the original eigenvalue equation
of Morse and Bolt [2] into an entire function. One numerical procedure finds the eigenvalues using
Newton’s method and the other the homotopic continuation procedure. The latter procedure is
faster and tracks multiple eigenvalues in strips of unit width running parallel to the imaginary
axis.
Once the eigenvalues were found, the natural frequencies and damping constants of the room

modes could be obtained. The specific acoustic impedances in octave frequency bands of a hard-
walled rectangular room were estimated by comparing the collective-modal-decay curve with
measured decays. The damping constants were used to obtain the reverberation times of the
modes. It was found that a single reverberation time, for all modes, is only supported in the
rectangular room with hard walls and at the higher frequency bands, consistent with Sabine’s
theory, which assumes a diffuse sound field. In the rectangular room with hard walls and at the
lower frequency bands, and in the room with the floor lined with sound absorbing material and
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for all frequency bands, modes with rather distinctive reverberation times may produce sound
decays not always consistent with Sabine’s prediction.
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